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Abstract—A trained neural network classifier is commonly used to predict cardiac abnormalities by the classification of heart 
sound signals, also known as phonocardiogram (PCG) signals. On the other hand, the best training optimization algorithm for 
this variety of classification problem is nevertheless up for discussion. In this study, we explore the use of the Nonlinear auto-
regressive networks with exogenous inputs (NARX) network for the classification of many different features extracted from la-
belled PCG signals. The classification performance of the trained NARX model is explained in terms of three separate optimization 
algorithms that are used to train the classifier. The specified results on testing PCG signals confirm that the NARX classifier is 
better when trained with the Bayesian regularization (BR) algorithm than when trained with the Levenberg-Marquardt (LM)or 
Scaled Conjugate Gradient (SCG)optimization algorithm. significantly, this classification model performs outperforms a standard 
approach. 
 

Index Terms— Heart sound signals, Phonocardiogram (PCG), NARX, training optimization, LM, SCG, BR.  

——————————      —————————— 

1 INTRODUCTION                                               

utomatic detection of disease is based on the establish-
ment of flexible and efficient non - invasive techniques. 
Cardiovascular diseases (CVDs) are also known as cardiac 

diseases. In terms of cardiac disease, one of the major causes of 
death around the world, medical experts are used to evaluate 
the heart health using a medical stethoscope to hear its sound. 
This assessment approach implies the acquisition of skills over 
a long period of time.  In this method, it was the beginning of 
thinking of the automated examination of the heart's health 
through a computer-assisted analysis of sound recordings. 
Alongside, the electrocardiogram (ECG) [1] and the photo-ple-
thysmogram (PPG) [2], the phonocardiogram (PCG), which rec-
ords the heart's sounds and murmurs, its capable of being used 
efficiently to monitor the heart's health. The ECG and PCG are 
closely interconnected signals and are suspected of having 
more information than the PPG signal. The PCG signals allow 
for the registration, retailing, and interpretation of heart sounds 
as part of a comprehensive medical test. 

The major reason for audible sounds during phonocardiog-
raphy (PCG) recordings is the mechanical activity of the heart 
muscle. [3]. One cardiac cycle of the PCG signal contains two 
distinct heartbeats called 𝑆 and 𝑆 , and the systolic and dias-
tolic regions. The heartbeats 𝑆 and 𝑆 are defined for normal 
heart and sound activities, called murmurs, arise in the systolic 
and diastolic regions in case that there is heart abnormality. 

The cardiac cycle is the time interval between the start of one 
heartbeat and the start of the next one. It can be described as the 
time between the start of 𝑆 and the start of the following 𝑆 in 
the next cycle. The systolic region is the time interval between 
the end of 𝑆 and the beginning of 𝑆 , and the diastolic region is 
the time interval from the end of 𝑆 to the beginning of 𝑆 in the 
next cycle. 

We offer the use of the nonlinear autoregressive networks 
with exogenous inputs (NARX) to classify the heart sound sig-
nals whether they are normal or abnormal. There are two dif-
ferent architectures of NARX network, namely, open-loop and 
closed-loop. The open-loop architecture of NARX network is 
used throughout the training phase due to the availability of 
true past values of the time series. After that, this trained open-
loop of NARX network is converted to a closed-loop architec-
ture, which is useful for multi-step-ahead prediction in the test-
ing phase.  The objective of training a neural network is to mini-
mize a large-scale cost function. This problem is handled with an 
optimization technique that searches through a space of possible 
values for the neural network weights for a set of weights that 
results in good performance on the training dataset. A certain 
training optimization algorithm may be appropriate for one is-
sue but ineffective in another. 

In this paper, we present an experimental comparison analysis 
of three optimization algorithms used for training the NARX net-
work for the task of binary classification of PCG signals. Three 
different training optimization algorithms will be compared. 
Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM), 
and Bayesian regularization (BR) are used to evaluate the 
NARX model for the identification of the perfect fit of the PCG 
signal training optimization algorithm with the best results.  

The remainder of this work is arranged in the following 
manner. Section2 reports the related works. The proposed 
methodology is summarized in Section 3, Section 4 presents the 
experimental results, and the work is concluded in section5. 
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2 RELATED WORK 
Trained artificial neural network (ANN) have shown good 

superiority in the computerized classification of heart sound 
signals. ANN models mainly include deep neural networks 
(DNN), feed-forward neural network (FFNN), convolution 
neural networks (CNN), recurrent neural networks (RNN), etc.  

Multilayer perceptron (MLP) was created using a public 
PCG database, given by Physio net/CinC 2016. Then 38 fea-
tures were extracted from those signals using time-domain sta-
tistical characteristics of the signal, Mel-frequency spectral co-
efficients (MFCC) and DWT detail, and approximation coeffi-
cients to investigate heart sounds and classified them as normal 
or abnormal based on the efficiency of the ensemble classifier 
as listed in [4].  

The FFNN model is one of the most associated classifiers that 
was used for the classification of PCG signals. One network that 
uses a back-propagation FFNN with 324 features, is discussed 
in [5] and a second one that implements FFNN with 90 features 
is presented in [6]. For training and testing the network, the fea-
ture vectors are extracted from the time representation, the fre-
quency representation, and the time-frequency representation 
of PCG signals. In [7], an ensemble of 20 FFNN is created for 
anomaly and reliability detection of 3454 PCG label records, 
that are provided by Physio net/Computing in Cardiology 
Challenge. In this approach, 40 features in the time, frequency, 
and time-frequency domains were extracted.  

 The implementation of deep learning has developed signif-
icantly in the classification of PCG signals, particularly the deep 
convolutional neural network (CNN). The wavelet coefficients 
are used as features for the classification of PCG signals using 
deep CNN in [8], and the Mel-frequency spectrum coefficients 
(MFCCs) in [9]. Researchers use a combination of time-fre-
quency heat map representations and deep CNN for such a 
classification model in [10]. The statistics map of PCG signals is 
constructed using MFCC's and one-dimensional time series to 
obtain the time-frequency distribution of signal energy. Convo-
lutional neural network (CNN) was indicated for heart sound 
classification without segmentation with the benefit of the de-
signed CNN architecture, the features of the heart cycles with 
different start positions are fused in the network the proposed 
approach is implemented on standard datasets from the PAS-
CAL classifying heart sounds challenge as mentioned in [11].  
As part of the Physio Net/Computing in Cardiology Challenge 
2016, CNNs are learned to distinguish normal/abnormal labels 
from 5-second samples taken from a recording rather than from 
the actual recording. The overall classification results are calcu-
lated for its segments using a voting system. The extracted fea-
tures include Spectrograms and Mel frequency Cepstrum coef-
ficients are our characteristics as in [12].  

New varieties of ANNs are established to diagnose the 
sound heart into various types of valve-physiological heart dis-
ease, these are the multilayer perceptron (MLP), Elman neural 
network (ENN), and Radial Basis Function (RBF) network with 
a backpropagation training algorithm. Training feature vectors 
are constructed based on the wavelet decomposition of sound 
signals, which are divided into natural heart sound and the 
other six valve physiological heart categories as listed in [13].  

To model the dynamic characteristics between sequential 

heart sound signals, a newly updated feature extraction based 
on MFCCs are selected to train a deep convolutional and recur-
rent neural network (CRNN) for future classification [14]. The 
proposed deep learning model provided the superiority of the 
embedded local characteristics extracted from the convolu-
tional neural network (CNN) and the long-term associations 
collected by the recurrent neural network (RNN). Classification 
of PCG signals is later identified by applying the recurrent neu-
ral network (RNN) in many papers such as in [15]. The authors 
explained the classification results of four models of the net-
work, i.e., the long short-term memory (LSTM), the bidirec-
tional LSTM (B-LSTM), the gated recurrent unit (GRU), and the 
bidirectional GRU (B-GRU) based on Mel Frequency Cepstral 
Coefficient (MFCCs). A combination of two networks, i.e., B-
LSTM and CNN, is explained in [16]. Moreover, a technique is 
suggested to learn visual, and time dependent characteristics of 
murmur based on spectrogram and MFCCs of PCG signals. 

A DNN model by using Physio Net dataset used to catego-
rize cardiac audiences based on features composed of fractional 
Fourier transform and MFCCs as mentioned in [17]. A DNN 
was used with MFCCs, and discrete wavelets transform (DWT) 
features from the heart sound signal to detect a database of 5 
categories of PCG signals from various sources that contain one 
normal and 4 abnormal categories [18]. One of the popular clas-
sifiers used to identify the PCG signal is a multilayer percep-
tron Neural Network, which has been used to classify heart 
sounds using the discrete wavelet reduction, 250 cardiac peri-
ods from the heart sound model were used to implement the 
theoretical process as in [19].  

In [20] the nonlinear autoregressive network with exogenous 
inputs (NARX) is exploited for the diagnosis of heart abnormal-
ity with spectral, temporal, and statistical classification fea-
tures. 

 

3 METHODOLOGY  
The nonlinear autoregressive network with exogenous in-

puts (NARX) network is used for the binary classification, i.e., 
normal, and abnormal, of PCG signals. A feature vector of 
length 27 is used to train and test the NARX network. The vec-
tor is extracted from PCG signals of labelled normal and abnor-
mal heart sound signals. This vector is composed of different 
entries, including deterministic coefficients and statistical pa-
rameters. The proposed methodology is depicted in Figure 1. 

The methodology starts with the extraction process for a fea-
ture vector of PCG signals, then the classification of the ex-
tracted features by using the NARX model for the identification 
of cardiac abnormalities. When it comes to PCG signal classifi-
cation, there are several factors to take into account. We explore 
the effects of using a particular optimization algorithm for 
training the NARX model. Among the various algorithms that 
can be used to train the NARX model, we select Scaled Conju-
gate Gradient (SCG), Levenberg-Marquardt (LM), and Bayes-
ian regularization (BR) algorithms. 
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Fig. 1. The flow graph of proposed methodology 

 

3.1 Feature Extraction 
 

In this phase, parameters are assembled and used to classify 
signals, which can distinguish between the PCG signal catego-
ries, which can be a frequency domain, time domain, or statis-
tics parameters [21].  A total of 27 features are extracted and cat-
egorized as shown in Table I.  
 

 Mean: 

The mean of a signal is represented as the sum of all ampli-
tude of the signal divided by the number of them. The mean of 
a signal is represented as the average amplitude of the signal 
over the total time. Taking amplitude elements at the signal as 
{x1, x2, x3. . .Xn}; mean (µ) of the amplitude for the signal under 
consideration is developed as given in Eq. (3), where xi is the 
value of the amplitude of the signal at its instance. The mean 
value in abnormal signals is, generally, higher than the normal 
signals.  

𝜇 =
1

𝑁
𝑥  

 
 Median: 

 Arranging the amplitude values {x1, x2, x3. . .Xn} of a signal 
in ascending order and considering the middle element from a 
sorted list of N elements, its position is computed using the for-
mula given as Eq. (4) 

𝑖 = (𝑁 + 1)/2 

TABLE 1 
FREQUENCY DOMAIN AND STATISTICAL-BASED PARAMETER FEA-

TURES 

 
 Standard deviation (SD): 

Standard deviation: measure variability and consistency of 
the signal. The low standard deviation shows that data points 
tend to be close to the average, while a higher standard devia-
tion indicates that data points are widely distributed from sig-
nal values.  

 

𝑆𝐷 =
1

𝑁
(𝑥𝑛 − 𝜇)  

 
 Mean Absolute Deviation (MAD):  

(MAD): It describes variations in a dataset and provides a 
glimpse of spread out of value. For a waveform, MAD is an av-
erage of the summation of the difference of each amplitude 
point on the wave, with the overall mean of the signal.  

𝑀𝐴𝐷 =
1

𝑛
|𝑥 − 𝜇| 

 
 Quantile25 (C25):  

The first 25% of the elements from a series of amplitude val-
ues of the signal, which are arranged in an ascending order 
𝑋 < 𝑋 < 𝑋 , … … <  𝑋  relative to their magnitude. These are 
selected by dividing the total number of elements by 4. 
The value, which is determined after performing this calcula-
tion is the 25th percentile element of the signal.C25 is repre-
sented by Quantile and expressed as Quantile 25 = N/4; where 
N = total number of values in a signal (from 𝑋 to 𝑋 , where 
𝑋 has maximum amplitude). 

 
 Quantile75 (C75) 

    By arranging the first 75% of the items from a set of ampli-
tude values of the signal, that are arranged in ascending order, 
𝑋 < 𝑋 < 𝑋 , … … <  𝑋   with relate to their magnitude. These 
are specified by dividing the total number of elements by 4 and 
multiplying the result by 3. The value, that obtained after ad-
ministering this analysis the 75th percentile item of the sig-
nal.C75 refer Quantile75 and is defined as C75 = 3N/4; where 
N = total number of values in a signal (from 𝑋 to 𝑋 , where 
𝑋 has maximum amplitude). 

 

 Frequency domain features Statistical domain features 

1 - MFCC1:  MFCC13 
2 - Dominant frequency value 
3 - Dominant frequency magnitude 
4- Dominant frequency ratios  
5 - Entropy 

1 - mean  
2 - medians 
3 - variances 
4 - standard deviation 
5 - mean absolute deviation  
6 - skewness 
7 - kurtosis  
8 - 25% percentile 
9 - 75% percentile 
10 - IQR 
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 Inter-quartile range (IQR): 

The IQR presents a measure of spread in a data set and is 
also known as various dispersion measurements. It uses the 
definition of the median instead of using the mean. To produce 
the difference between the quarter and three-quarters value, the 
median of the lower half (or lower quartile) is calculated and 
deducted from the median of the upper half (or upper quartile). 
It shows data distributed to either side of the median. It is the 
difference between Quantile75 and Quantile25 of a signal de-
veloped as IQR= Quantile75 - Quantile25 

 
 Spectral entropy: 

Entropy can be interpreted as a measure of uncertainty about 
an event at frequency. Spectral entropy uses the Fourier trans-
formation method, in which the power spectral density (PSD) 
can be obtained. The PSD represents the distribution of power 
as a function of frequency.  

 
 Skewness:  

The skewness is the degree of asymmetry of a particular dis-
tribution. When the data distribution is symmetrical, skewness 
is nearby zero. Positive skewness suggests an asymmetric tail 
extension distribution-Positive value toward. Negative skew-
ness means a distribution with an asymmetric tail that extends 
to a more negative value.  Equation (5) is used for calculating 
the skewness. 

1
𝑛

∑ (𝑥 − 𝜇)

𝜎
 

 Kurtosis:  

Kurtosis is the relative peak- ness or flatness of a distribution 
compared with normal distribution. Kurtosis to normally dis-
tributed data Are zero. Good kurtosis shows a comparatively 
small distribution.  Negative kurtosis indicates a relatively flat 
distribution. As with skewness, if the value of kurtosis is too big 
or too small, there is concern about the normality of the distri-
bution. The formula for computing kurtosis is given in Eq. (6) 
as 

1
𝑛

∑ (𝑥 − 𝜇)

𝜎
 

 Dominant frequency analysis. 

The most common application is the use of dominant fre-
quency (DF) analysis for estimating atrial activation rates. The 
dominant frequency is the frequency of the sinusoidal signal 
with maximum amplitude. This sinusoidal waveform also is 
the one that best approximates a signal. If the signal is strongly 
periodic, an approximate waveform in morphology, the domi-
nant frequency will in most cases be associated with the rate of 
the signal. The DF includes three sub-parameters as following: 
1- DF value is the frequency at which the maximum of the 

spectrum occurs (Hz). 
2- DF magnitude is the amplitude value of the DF value. 
3- DF ratio is the ratio of the energy of the maximum to the 

total energy.  

 Mel Frequency Cepstral Coefficients (MFCC). 

Mel Frequency Cepstral Coefficient (MFCC): is a common 
and efficient technique for signal processing. The cause of using 
the first 13 of MFCC (lower dimensions) representing the enve-
lope of spectra. The discarded higher dimensions express the 
spectral details. For different sounds, envelopes are enough to 
represent the difference, so we can recognize phonemes 
through MFCC.   

3.2 NARX neural network 
In this study, NARX  is a nonlinear autoregressive exoge-

nous input neural network (NARX model) was used. The inter-
nal architecture perceived as the Multi-Layer Perceptron (MLP) 
is used in NARX neural network model. The MLP provides a 
powerful structure that enables us to learn any type of continu-
ous nonlinear mapping. NARX is a reliable predictor of time 
series [22][23][24]. Such as any neural network, the NARX net-
works consist of an input layer, a hidden layer, and an output 
layer. In addition to some efficient component neurons, activa-
tion or transfer functions, scaler weights, bias, feedback connec-
tions, and tapped delay lines (i.e., memory) [26][27]. Based on 
theory, NARX networks can be used instead of recurrent net-
works with comparable computational efficiency. It is used ef-
ficiently in time series modeling because it has a flexible struc-
ture that combines simplicity and time series prediction. More-
over, they have proven to be much more efficient than other 
neural networks, to converge more rapidly and to spread more 
efficiently.  

For the purpose of achieving the perfect performance of the 
NARX neural network for nonlinear time series prediction, it is 
necessary to use its memory ability using the past values of pre-
dicted or true-time series, there are two ways of prediction us-
ing the NARX model as shown in Figure 4. The first one based 
on the actual values of output, which is called is series-parallel 
architecture or (open-loop network). Furthermore, the other 
one is based on the estimated values of output, which is called 
parallel architecture or (close-loop network). They are repre-
sented mathematically, respectively, as follows: 

𝑦(𝑡 + 1) = 𝑓 𝑦(𝑡), 𝑦(𝑡 − 1), … . , 𝑦 𝑡 − 𝑛 , 𝑥(𝑡 + 1), 𝑥(𝑡),

𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑛 )              (1) 

 

𝑦(𝑡 + 1) = 𝑓 𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦 𝑡 − 𝑛 , 𝑥(𝑡 + 1) , 𝑥(𝑡),

𝑥(𝑡 − 1), . . , 𝑥(𝑡 − 𝑛 )                (2) 

 
where f (·) is the mapping function of the neural network, yˆ 

(t + 1) is the output of the NARX at time t for the time t + 1 (it is 
the predicted value of y for the time t + 1). yˆ(t), yˆ (t − 1) . . .Yˆ 
(t − 𝑛 ) are the past outputs of the NARX. Y(t), y (t − 1) . . .Y (t 
− 𝑛 ) are the true past values of the time series, called also de-
sired output values. X (t + 1), x(t). . .X (t − 𝑛 ) are the inputs of 
the NARX. 𝑛  is the number of input delays and 𝑛  is the num-
ber of output delays. 

 In the series-parallel architecture, the future value of the 
time series y (t − 1) is predicted from the present and past values  
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Fig. 2. NARX Architectures  

 
of x(t) and the true past values of the time series y(t). In the par-
allel architecture, the prediction is performed from the present 
and past values of x(t) and the past predicted values of the time 
series y(t).  

The open -loop network is used in this study during the 
training process because of the availability of the true past val-
ues of the time series. The application of the open-loop network 
has two benefits. The First, the use of true values for the feed-
back network input is greater accurate. The second benefit is a 
network architecture that is pure network Usual Multi-Layer 
Perceptron (MLP) network-training algorithms can be used 
feedforward. The neural NARX networks are converted to 
closed- loop network, which is beneficial for multi-step-ahead 
prediction after the training process [28,29]. 

 
The mapping function 𝑓(. )  is initially undefined and it is 

applied during the training process of the prediction. In the 
NARX neural network model, the internal architecture that im-
plements this approximation is the Multi-Layer Perceptron 
(MLP). The MLP makes it possible to learn some form of con-
tinuous nonlinear mapping because it provides an effective 
structure. The input and output delays (feedback delay) have 
played an important role in enhancing the performance of the 
NARX model for the classification of the heart sound. 

3.3 NARX Training optimization algorithms 
The training process is applied to determine the appropriate 

weights and bias values. This is performed to minimize the 
overall error function between the network’s output and the de-
sired target with associated weights for the our NARX model. 

The training task is similar to reducing a loss function, which is 
a measure of how often the NARX model works in a classifica-
tion test. The intuitive method of training the model consists of 
three phases: (1) startup of weights and biases, (2) model eval-
uation based on estimated weights and biases, and the loss 
function, and (3) updating of estimated weights and biases in 
the path of loss function reductions. If the loss function's limits 
as small as possible, it will be moderate. In this instance, our 
network performs brilliantly. The training optimization algo-
rithm uses backpropagation to produce gradients, which are 
then used by the training optimization algorithm to minimize 
the loss function. Due to the fact that there are a variety of loss 
functions, they are all the same inherently reward us depending 
on the distance between a specific value's anticipated value and 
the actual value in our dataset. A popular variety of loss func-
tion is the mean squared error (MSE). This error range may be 
simply calculated by adding up all of the errors, dividing their 
lengths, and calculating the average. Scaled Conjugate Gradient 
(SCG), Levenberg-Marquardt (LM), and Bayesian (BR) are the 
three training optimizations employed as following;  

Scaled Conjugate Gradient (SCG): In comparison with the 
Conjugate Gradient Descent algorithms, the gradient descent 
algorithm updates the weights and biases along the steepest de-
scent path but is typically associated with a low convergence 
rate [30]. The Conjugate Gradient (CG) algorithm is the modi-
fied variant of the steepest descent algorithm. In the conjugate 
gradient algorithm, a search is performed along such a direc-
tion that produces a faster convergence than the steepest de-
scent direction, while preserving the error minimization 
achieved in all previous steps. This direction is called the con-
jugate direction. In most of the CG algorithms the step-size is 
adjusted at each iteration. A search is made along the conjugate 
gradient direction to determine the step size, which will mini-
mize the performance function along that line.  

Levenberg Marquardt (LM): the LM algorithm first learning 
algorithm was initially introduced by Kenneth Levenberg and 
Donald Marquardt. The main reason to use this algorithm is to 
reduce the error function more effective and it is said to con-
verge rapidly with substantial use in neural network fields. LM 
training algorithm is highly effective when training networks 
reach a few hundredweights. The Levenberg-Marquardt algo-
rithm combines two minimization methods: the gradient de-
scent method and the Gauss-Newton method [31] [32] [33]. In 
the gradient descent method, the sum of the squared errors is 
reduced by updating the parameters in the steepest-descent di-
rection. In the Gauss-Newton method, the sum of the squared 
errors is reduced by assuming the least-squares function is lo-
cally quadratic and finding the minimum of the quadratic. The 
Levenberg-Marquardt method acts more like a gradient-de-
scent method when the parameters are far from their optimal 
value and acts more like the Gauss-Newton method when the 
parameters are close to their optimal value.  

Bayesian Regularization (BR): the BR-training algorithm 
is updating the weights and bias values according to LM opti-
mization and introduces network weights into the training ob-
jective function. It minimizes a combination of squared errors 
and weights and then determines the correct combination to 
produce a network that generalizes well. [34].  The BR-training 
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algorithm is one of the best approaches to overcome the over-
tendencies in (ANNs) synthesis so that its prediction accuracy 
can be further enhanced for invisible data. This approach re-
duces the problem of over-fitting by considering the goodness 
of the appropriate fit as well as the structure of the network 
[35][36]. 

4 EXPERIMENTAL RESULTS AND DISCUSSION 
A NARX model is developed as a binary classifier to iden-

tify the classification of PCG signals if it was normal or abnor-
mal by using NARX series-parallel architecture (open-loop net-
work) for training and NARX parallel architecture (close-loop 
network) for testing in addition to studying the effect of three 
training optimization, which are Levenberg – Marquardt (LM), 
Bayesian regularization (BR) and Scaled Conjugate Gradient 
(SCG) techniques. Efficient combination of parameters that can 
be assessed for the classification process are essential for the im-
plementation of the proposed model. Table 2. describes three 
different combinations of parameters selected for the investiga-
tion of NARX network for such classification task.  

4.1 Network Setup 
When implementing ANNs for the training process, the first 

step is to find an effective combination of activation function 
and optimization algorithm. Among different variations that 
can be assessed for the classification challenge, we have listed 
the following one (see table II). 

Activation function: the hyperbolic tangent (tansig) activa-
tion function in the term of neural networks, is like a bipolar 
sigmoid function with 1 to +1 output range. It is mathematically 
equivalent to tanh. Although sigmoid runs faster than tanh, 
there are very small numerical differences between them. As a 
matter of tradeoff between the speed and accuracy in the net-
work, sigmoid is preferred where speed is more significant than 
the precise shape of the activation function. 

Loss function: the performance of training can be evaluated 
using several parameters, including recognition accuracy, 
speed of training, correctness. Among these parameters, the 
mean squared error is the most important one and it is defined 
by 

 𝑀𝑆𝐸 = ∑ 𝑇(𝑛) − 𝑌(𝑛)  
 

where T(n) is the target and y(n) is the predicted output  
Optimization algorithm: there are several types of learning 

algorithms available in ANNs. The optimization-training tech-
niques are used to obtain a small error using the backpropaga-
tion training algorithm. Three training optimizations are used, 
which are   Scaled Conjugate Gradient (SCG), Levenberg-Mar-
quardt (LM), and Bayesian regularization (BR).  

These algorithms find the minimum of a multivariate func-
tion that can be expressed as the sum of squares of non-linear 
real-valued functions.  

According to this algorithm, an iterative process is used to 
reduce the performance function in each iteration. Due to this 
iterative property train, BR is considered the fastest training al-
gorithm for networks with moderate size. 

The number of neurons and (𝒏𝒙, 𝒏𝒚): The combinations of 
hidden neurons and delays produce the lowest average mean. 

TABLE 2 
 DETAILS OF THE PROPOSED MODEL 

 

4.2 Performance metrics  
In the evaluation of classification systems, classification per-

formance is perhaps the most important factor. Essentially, it 
should be a count of how many signal instances were success-
fully classified against how many were mistakenly labelled. 
There are two types of errors that can arise. A false negative 
(FN) refers to the total number of PCG signals from pathologi-
cal hearts that are categorized as normal, whereas a false posi-
tive (FP) relates to the total number of PCG signals from normal 
hearts that are identified as abnormal. in just the same way that 
FP and FN are defined, the true positives (TP) are clearly diag-
nosed abnormal heart sounds, while true negatives (TN) are 
correctly classified normal heart sounds. The classification per-
formance of PCG signals is commonly assessed using the above 
parameters by computing the sensitivity (Sens.), the specificity 
(Spec.), and the accuracy (Acc.) as [37]. 

(SE) = TP / (TP + FN). 
(SP) = TN / (TN + FP). 
(ACC) = (TP + TN) / (TP + FP + FN + TN).  
 

4.3 Dataset 
 The datasets that have been discussed in this paper, as well 

as a few other studies listed, are taken from the Physio Net 2016 
challenge, which is publicly available on the website [38].  

The total number of extracted 27-length feature vectors of the 
recordings is 6316 with 3158 vectors of healthy hearts and 3158 
of unhealthy hearts. 80/20 and 70/30 percentages of the total 
number of feature vectors were used to train/test the three net-
works. 

4.4 Results 
Table 3 reports the classification results of testing PCG sig-

nals for the percentage of training/testing split of data, of 
70/30. The NARX architecture model with the number of neu-
rons equals 30 and the number of input and output delays is 6, 
performs better than the other architecture with the number of 
neurons and delays (𝒏𝒙, 𝒏𝒚) is equal to 20 and 4, respectively.   

In general, the NARX classifier provides comparable perfor-
mance when trained with the BR and LM algorithms. However, 
it gives low performance values when trained with the SCG al-
gorithm. The optimum performance records achieved by the 
NARX model are 0.9382, 0.8924, and 0.9153 of sensitivity, spec-
ificity, and accuracy, respectively, for the BR training algorithm 
with number of neurons is 30 and number of delays (𝒏𝒙, 𝒏𝒚)  
equals 6.  

 

Network Train BR Train LM Train SCG 

Activation Function TANSIG TANSIG TANSIG 
Performance function MSE MSE MSE 

No. hidden layers 1 1 1 

No. neurons  20or 30 20 or 30 20 or 30 

No. delays (𝒏𝒙, 𝒏𝒚) 4or 6 4or 6 2,4or 6 
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TABLE 3 
THE CLASSIFICATION RESULTS 

 

 
 Figures 3 and 4 show the confusion matrices for the train-

ing/testing split of data, of 80/20. The confusion matrix is a 
technique of summing up the classification performance. If you 
have an unequal number of observations in each class or if you 
have more than two classes in your dataset, classification accu-
racy alone can be misleading.  

 

 
Fig.3 Confusion matrix at # neurons = 30, # delays (𝒏𝒙, 𝒏𝒚) = 6. 
 
 
 

Fig.4 Confusion matrix at # neurons = 20, # delays (𝒏𝒙, 𝒏𝒚) =4. 
 
Calculating the confusion matrix will give you a clearer un-

derstanding of what's going right in your classification process 
and what types of errors it makes. As observed in the figures, 
the classification performance for the training/testing split of 
data of 80/20 follows the same trend of the classification per-
formance for the training/testing split of data of 70/30. 

 
Figure 5. depicts the performance accuracy of the NARX 

model when trained with the selected optimization algorithms, 
in the case of dividing the training/testing data into a ratio of 
80/20. The classification accuracy of the model with the num-
ber of neurons equals 30 and the number of input and output 
delays (𝒏𝒙, 𝒏𝒚)  is 6, is much better than with the number of 
neurons equals and the number of input and output delays is 
20 and 4, respectively. Moreover, the accuracy of the NARX 
classifier when trained with the BR is comparable to when 
trained with LM algorithm. However, lower accuracy is re-
garded when the classifier when is trained with the SCG algo-
rithm. 
 

 
 
 

 Normal Abnormal  

Normal 
True 
Negative 
618 

False 
Positive 14 

Specificity 
(SP) 
0.9778 

Abnormal 
False 
Negative 
12 

True 
Positive 
620 

Sensitivity 
(SE) 
0.9810 

(A) BR algorithm 

 Normal Abnormal  

Normal 
True 
Negative 
612 

False 
Positive 
20 

Specificity 
(SP) 
0.9683 

Abnormal 
False 
Negative 
17 

True 
Positive 
615 

Sensitivity 
(SE) 
0.9731 

(B) LM algorithm 

 Normal Abnormal  

Normal 
True 
Negative 
586 

False 
Positive 
46 

Specificity 
(SP) 
0.9272  

Abnormal 
False 
Negative 
42 

True 
Positive 
590 

Sensitivity 
(SE) 
0.9335 

(C) SCG algorithm 

 Normal Abnormal  

Normal 
True 
Negative 
630 

False 
Positive 
2 

Specificity (SP) 
0.99684 

Abnormal 
False 
Negative 
1 

True 
Positive 
631 

Sensitivity (SE) 
0.99842 

(A) BR algorithm 

 Normal Abnormal  

Normal 
True 
Negative 
618 

False 
Positive 
14 

Specificity (SP) 
0.97784 

Abnormal 
False 
Negative 
12 

True 
Positive 
620 

Sensitivity (SE) 
0.98101 

(B) LM algorithm 

 Normal Abnormal  

Normal 
True 
Negative 
591 

False 
Positive 
41 

Specificity (SP) 
0.93512  

Abnormal 
False 
Negative 
35 

True 
Positive 
597 

Sensitivity (SE) 
0.94462 

(C) SCG algorithm 

Network # neurons = 30, 𝒏𝒙= 𝒏𝒚=6 # neurons = 20, 𝒏𝒙= 𝒏𝒚=4 

Se SP ACC Se SP ACC 

Train BR 0.9382   0.8924 0.9153 0.9100 0.8631 0.8865 

Train LM 0.91310  0.8700 0.900 0.8521 0.8321 0.8365 

Train SCG  0.8400 0.8109 0.8254 0.7354 0.7136 0.7245 
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Fig.5 the performance accuracy of the NARX model.  
 

5 CONCLUSION 
In this paper, we suggested an empirical study on op-

timization algorithms for training the NARX network for the 
classification of heart sound signals. We focus on three alterna-
tive algorithms, namely the Scaled Conjugate Gradient (SCG), 
the Levenberg- Marquardt (LM), and the Bayesian Regulariza-
tion (BR). In this approach, the NARX classifier showed better 
performance when trained with the BR algorithm in compari-
son to the other two algorithms. This study was carried out with 
the help of heart sound recordings were collected from Physio 
Net 2016 data. After the classification result conducted, it was 
shown that when the number of neurons and delays (𝒏𝒙, 𝒏𝒚) 
equal 30 and 6, respectively, it was better than at they equal 20 
and 4, in the case of dividing data into a ratio of 80:20 and a 
ratio of 70:30.  
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